Machine learning with Mahout and Hadoop session

Tonight I attended a session about machine learning with Mahout at BNotions. The session was organized through the Toronto Hadoop User Group.
Quick Notes
  • BNotions uses Hadoop and Mahout for their Vu mobile app. Vu is a smart news reader that recommends articles based on article similarity to things you like as well as user similarity to you.
  •  Graph theory and graph processing algos are helpful for this work.
  •  Likes, dislikes, reads, skips are the most important input for their machine learning. Also relevant: user preference for breadth of topics vs depth; recency; natural language processing to extract topic keyword and organize topics by similarity.
  •  Redis is used for transient storage. It has some useful ops above just key-value. They use S3 as a data warehouse, but it could just as easily be HDFS.
  •  They use Amazon EMR as the Hadoop cluster. EMR constrains technology choice. For example, harder to use HDFS, hence Redis instead. They are evaluating HBase as an alternative — performance differences not relevant for use case.
  •  They don’t currently adjust for article length as factor in recommendations.
  •  They use a third party API for NLP, not Hadoop specidically. Only once per article, so not a bottleneck yet. Not happy with NLP quality, though.
  •  Cascalog/JCascalog to query the Hadoop data using Scala.
  •  Scalability is limited by cost, not capability. May switch from EMR to dedicated cluster,  etc as cost grows.
  •  Data science 10%, engineering 90%. Stock algos for rapid application development, tweak after. Deployment (my own specialty!) can be painful.
  •  Service-oriented architecture (SOA) helps with deployment. Simplifies components, but adds a devops layer. Jenkins is used to automate builds.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.